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Abstract—Finding a small object (e.g., keys or a wallet) in
an indoor environment (e.g., in a house or an office) can be
frustrating. In this paper, we propose an innovative system,
called HyperEar, to localize such an object using only one
single smartphone, based on enhanced time-difference-of-arrival
(TDoA) measurements over acoustic signals issued from the
object. One major challenge is the hardware limitations of a
Commercial-Off-The-Shelf (COTS) phone with a short separation
between the two microphones and the low sampling rate of
such microphones. HyperEar enhances the accuracy of TDoA
measurements by virtually increasing distances between micro-
phones through sliding the phone in the air. HyperEar requires
no communication for synchronization between the phone and the
object and is a low-cost and easy-to-use system. We evaluate the
performance of HyperEar via extensive experiments in various
indoor conditions and the results demonstrate that, for an object
of 7m away, HyperEar can achieve a mean localization accuracy
of about 15cm when the object in normal indoor environments.

Index Terms—object finding; time difference of arrival; indoor
environment; smartphone; acoustic source localization

I. INTRODUCTION

It is often the case that people find it is very frustrating

to find their personal objects, such as keys and wallets, in an

indoor environment. With the proliferation of mobile devices

(e.g., smartphones, smartwatches, and tablets), it would be

appealing to use one such mobile device to localize small

personal objects. To this end, a tag issuing inaudible acoustic

signals can be attached to a private object and can be localized

by the smartphone of the object owner.

Such an application pose four rigid requirements to a system

as follows: 1) far operational distance: as a tag may be

far from the mobile device of a user, especially for a large

indoor environment, the system should work well at a long

distance. 2) good localization accuracy: object finding calls for

dm- or even cm-level localization accuracy. 3) excellent user
experience: the system should be easy to use and minimize the

involvement of users; otherwise, users would get bored and

quit using the system. Last but not least, 4) low deployment
cost: the system should rely on devices that are cheap or users

already have.

In the literature, existing techniques are insufficient to meet

all above requirements. A number of pioneering sound source

positioning systems [1]–[6] heavily rely on wireless com-

munication for synchronization. For example, in Cricket [1],

ultrasound is used to localize the speaker via Time-of-Flight

(ToF) and the speaker and microphones are synchronized

through radio frequency (RF) signals. BeepBeep [4] also needs

wireless communication for phone-to-phone ranging. Another

large portion of existing work [7]–[12] is based on dedicated

hardware such as microphone arrays deployed in specific

locations in advance. For example, an 8-microphone-array is

used on a mobile robot to localize a sound source in 3D [7].

Stefanakis et al [12] propose a system to use a 4-microphone-

array to estimate the angle-of-arrival (AoA) of multiple sound

source. Several recent studies [13], [14] use smart devices to

localize a sound source at mm-level accuracy. For example,

keystrokes can be snooped with a smartphone placed by a

keyboard [13]. vTrack [14] uses two or three microphones of a

smartphone to localize and track a speaker near the phone and

can achieve an accuracy of 2.3mm on 0.26m×0.2m regions.

These systems can achieve very accurate localization but only

work in a short range. WalkieLokie [15] is one recent work

that also considers to localize a remote sound source with one

single smart device. However, it needs users to continuously

walk. As a result, there is no existing solution, to the best of

our knowledge, to localizing an small acoustic object with one

single smartphone.

In this paper, we propose an indoor acoustic source localiza-

tion system, called HyperEar, which uses a Commercial-Off-

The-Shelf (COTS) smartphone to localize a remote speaker

in an indoor environment. HyperEar can be deployed as a

software (e.g., an app) without any hardware modification. The

basic idea of HyperEar is get highly accurate Time Difference

of Arrival (TDoA) measures of inaudible acoustic beacons

with a smartphone. More specifically, to find the target speaker,

a user, holding his/her phone, first selects an appropriate

direction and then slides the phone in the air along the

direction back and forth for several times. For each onboard

microphone, one TDoA can be obtained before and after one

slide. With at least two microphones and two corresponding

TDoA measures, triangulation can be conducted to estimate

the relative location of the phone with respect to the speaker.

Two main challenges lie in the HyperEar scheme. First, with

the short distance between both microphones and their limited

sampling rate, how to obtain accurate TDoA measurements

is not straightforward. For instance, given the small size of

a phone, two onboard microphones are separated at most

at a distance of about 13-15cm. If the sampling frequency
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is 44.1KHz as adopted by most smartphones and the sound

speed is 343m/s, there would be about only 40 distinguishable

TDoA measurements, dividing the space into 40 regions.

Consequently, locations in the same TDoA region cannot be

discriminated. As such regions expand quickly as the distance

from the phone increases, it leads to huge location ambiguity

when the speaker is far away from the phone.
To deal with this challenge, HyperEar innovatively incorpo-

rates two techniques to increase the density of TDoA regions.

First, leveraging the uneven distribution of TDoA regions, the

phone is rolled around its z-axis to find the optimal direction,

where the speaker stays in the area with densest regions (i.e.,

with least location ambiguity). Second, the phone is slid along

the identified direction in the air and TDoAs are calculated

based on the estimated sliding distance of each microphone.

In this way, the number of measurable TDoAs is no longer

restricted by the size of the phone but the sliding distance of

the phone. Therefore, by increasing the sliding distance, the

density of TDoA regions can also be increased.
The second challenge is how to accurately estimate the

sliding distance of phone with low-end onboard sensors. With

unstable hand operations, it is unlikely to achieve perfect

movements of the phone. Furthermore, the ever-changing pos-

ture of the phone and error-prone acceleration readings result

in unexpected rotation and displacement estimation errors.
To tackle this challenge, we leverage an appealing feature

of HyperEar, which allows slight phone rotation and displace-

ment from ideal slides. The reason is that the TDoA measure-

ment error, due to unstable sliding movements, occurring on

one microphone is about the same amount as that occurring

on the other microphone, and they are cancelled with each

other during the triangulation calculation. To deal with low-

quality acceleration readings, HyperEar leverages the fact that

the true velocity of the phone at the starting and at the ending

of a sliding movement should be zero, and adopts a linear

model to remove the accumulative errors caused by taking the

integral of acceleration readings over time.
HyperEar can be used for 2D localization and can be easily

extended for 3D localization as well. It has many advantages

as follows. First, it reaches the minimum deployment cost

with a cheap speaker and the user’s smartphone. Second, it

requires no synchronization or communication between the

speaker and the phone. Last but not least, it is easy to use

and has very light workload and elastic requirements for users.

We have implemented HyperEar on two types of smartphones,

and evaluated the performance of HyperEar through extensive

experiments in two indoor environments with different noise

types and levels. The results show that, for a speaker of 7m

away, HyperEar can achieve a mean localization accuracy of

about 15cm in a normal indoor environment and 37cm in a

noisy shopping mall.
We highlight our main contributions made in this paper as

follows:

• We propose a novel scheme, called HyperEar, to pas-

sively estimate highly accurate TDoA of acoustic beacons

issued from a distant speaker using a smartphone.

• We implement HyperEar on two Android-based smart-

phones, i.e., i.e., Samsung Galaxy S4 and Samsung

Galaxy Note3, which demonstrates the feasibility of the

proposed scheme.

• We conduct a systematic evaluation that shows the high

accuracy of HyperEar. The results demonstrate the effi-

cacy of the HyperEar design.

The remainder of this paper is organized as follows. We

present the system model, basic concepts of TDoA-based

localization and the restrictions of conducting acoustic local-

ization on a smartphone in Section II. Section III introduces

the architecture of HyperEar. Finding the direction between

a user and the target speaker is elaborated in Section IV.

Section V describes how to estimate the phone displacement

when the user sliding the phone in the air, given the noisy

inertial sensor readings. The procedures of acoustic source

localization based on triangulation is introduced in Section

VI. We discuss the practical issues that may be encountered

in Section ??. Section VII presents the performance evaluation

and experiment results. Section VIII compares HyperEar with

related work. Finally, we present concluding remarks of our

work and summarize the directions for future work in Section

IX.

II. RESTRICTIONS OF ACOUSTIC LOCALIZATION ON

SMARTPHONES

In this section, we introduce the system model and analyze

key factors that affect the localization accuracy.

A. System Model

To be practical, we consider a system with only two

components:

• One Single Speaker: a speaker can be attached to a target

personal object and periodically plays an acoustic signal.

This signal can be audible or inaudible to human ears,

depending on the specific application scenarios.

• One Single Smartphone: HyperEar exploits two micro-

phones and the inertial sensors, i.e., the accelerometer and

the gyroscope, embedded in a smartphone. Note that it

does not need any synchronization or data communication

between the phone and the speaker.

B. Basic Concepts of TDoA-based Localization

As we do not know when a particular sound signal is

emitted from the speaker, the TDoA of this sound signal

can be measured with two microphones. In essence, a TDoA

measurement reveals geometry information about the direction

of an incoming sound. Consequently, establishing the exact

position of this sound in 2D normally requires triangulation,

e.g., at least two distinct direction measurements. For example

as illustrated in Figure 1, let d1 and d2 denote the distance

between the speaker and two microphones Mic1 and Mic2,

respectively. Suppose Δt1 is the TDoA measured over Mic1

and Mic2, and then the distance difference Δd1 from the

speaker to this pair of microphones can be represented as

Δd1 = d1 − d2 = Δt1 × S (1)
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Fig. 1. Localization with triple microphones Fig. 2. Naive localization scheme with a two-
microphone phone

Fig. 3. Location ambiguity increases for far objects

where S is the velocity of sound. All possible positions

satisfying Δd1 lie on the half hyperbola h1 as illustrated by

the left red curve in Figure 1. Similarly, with Mic2 and a

third microphone Mic3, another half hyperbola h2, illustrated

by the right red curve, can be estimated and used to derive

the relative location of the speaker (i.e., the intersection of h1

and h2) with respect to these microphones.

As most COTS smartphones are associated with only two

microphones, one naive solution, as illustrated in Figure 2,

can be used to localize a phone if the location of the speaker

is known. First, a half hyperbola h1 can be calculated at a

position p1 with the onboard microphones Mic1 and Mic2.

Then, the phone can be moved to another position p2 and a

second half hyperbola h2 can be obtained. As a result, the

relative location between the speaker and the phone can also

be determined if the moving direction as well as the distance

from p1 to p2 are known.

C. Challenges for Locating Remote Objects

Several hardware limitations of a COTS smartphone make

the above naive solution very challenging when the speaker is

far from the phone.

Limited Sampling Rate. When recording, the sound is

digitized by the Analog to Digital Converter (ADC) of a

microphone at a fixed sampling rate fs. Therefore, the reso-

lution of TDoA measurements is restricted by the fs. Though

current state-of-the-art audio hardware on smartphones sup-

ports sampling rate of up to 192kHz, operating system usually

limits this to 44.1kHz, which means the resolution of TDoA

measurements is about 0.023ms or the resolution of distance

difference Δd (i.e., the distance interval between two adjacent

hyperbolas) is about 7.78mm at S = 343m/s.

Near Separation between Microphones. The number of

distinguishable hyperbolas also depends on the range of possi-

ble distance difference Δd, which is bounded by the distance

between the two microphones on the phone. As can be inferred

from Figure 2, the range of Δd is [−D,D], where D is the

distance between the two microphones. Given a sampling rate

fs and D, the number of distinguishable hyperbolas N can be

calculated as

N = �2Dfs/S�. (2)

For example, the distance between the two microphones of

a Samsung Galaxy S4 is 13.66cm. With a sampling rate of

44.1kHz, this yields only 35 measurable hyperbolas. As illus-

trated in Figure 3, with the limited number of distinguishable

hyperbolas, the density of hyperbolas drops dramatically as

the distance from the microphones increases. While adopting

naive TDoA localization schemes can achieve cm- or mm-

level accuracy for very near objects, it is very challenging

to accurately localize a far sound source. For instance, the

localization error of the above naive scheme can reach up

to 18.6cm and 266.7cm when the sound source is located at

1m and 5m away from a Samsung Galaxy S4 smartphone,

respectively.

Low-end Inertial Sensors. In the naive scheme, onboard

inertial sensors can be used to estimate the information of

the moving direction and distance of the phone from p1 to

p2. Deriving accurate motion information with sampled and

error-prone sensor readings, especially under the condition that

phone movements are carried out by untrained users, is very

difficult.

D. Key Observations on TDoA Measurements

With regard to measuring TDoAs on smartphones, we

have two main observations. First, as shown in Figure 4(a),

it is clear to find that the distribution of hyperbolas over

space is quite uneven, with the central areas having a denser

distribution of hyperbolas than other sideward areas. Second,

if we increase the separation between two microphones from

D to D′, as shown in Figure 4(b), the number of hyperbolas

will also increase according to (2), leading to a higher density

of hyperbolas at remote locations.

III. OVERVIEW OF HYPEREAR

We propose an innovative scheme, called HyperEar, to

solve the problem of indoor smartphone localization with a

single remote speaker. The core idea is to expand the TDoA

measurement range by moving the phone in the air so that the

number of distinguishable hyperbolas is increased, reducing

the location ambiguity at a far distance from the phone.

Moreover, the motion of the phone is tracked and estimated

by processing the noisy inertial sensor readings. As depicted
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Fig. 5. System architecture of HyperEar

in Figure 5 , the structure of HyperEar incorporates six main

components.

Acoustic Signal Preprocessing (ASP). ASP performs three

functions to improve the accuracy of TDoA measurements.

First, ambient sound being out of the frequency band of the

sound signal is filtered out. Second, interpolation is carried out

to achieve sub-sample resolution. Third, sampling frequency

offset (SFO) errors between the speaker and each of the two

microphones are corrected.

Speaker Direction Finding (SDF). The key function of

SDF is to find the direction of the speaker. It needs to detect

sound signals at both microphones and measure the TDoA

for each signal. Based on the relationship of previous TDoA

measurements, it gives instructions to help a user find the

direction of the speaker.

Motion Signal Preprocessing (MSP). The motion infor-

mation of the phone is required in HyperEar. This component

preprocesses the accelerometer and gyroscope readings. First,

it removes high-frequency noise from both signals. It then

segments the movement of the phone based on the power level

of the acceleration signal.

Phone Displacement Estimation. (PDE) In HyperEar, the

phone is required to move in both horizontal and vertical

directions. Therefore, the displacements of the phone in each

direction are estimated. This component takes the segmented

acceleration signals as input to estimate the moving speed and

distance of the phone along some direction.

2D TDoA Localization (TTL). The key function of this

component is to estimate the distance between the speaker

and the phone. Instead of measuring a TDoA based on two

microphones at the same position, it measures a TDoA based

on two positions at the same microphone. It then integrates

the information of the TDoA measurements, the motion es-

timation, and the direction of the speaker to perform 2D

triangulation.

Projected Location Estimation (PLE). PLE tackles indoor

smartphone localization in 3D scenarios. Instead of estimate

the relative location of the speaker in 3D space, HyperEar

calculates the projected location of the speaker on the floor

map. In this way, it does not need to know the height

information of the speaker and that of the phone.

IV. SPEAKER DIRECTION FINDING

The purpose of finding the direction of the speaker is two-

fold. First, if the direction of the speaker is known, we can

roll the phone along its z-axis so as to make the speaker

sit in the dense area of hyperbolas as depicted in Figure

4(a). Second, this direction information is required in the

triangulation calculation. The SDF can find the direction of

the speaker based on the fact that, when the speaker aligned

with the x-axis of the phone, the TDoA measured on the phone

should be zero.

A. Signal Detection and TDoA Measurement

In HyperEar, the speaker periodically plays a chirp signal, in

which the frequency first linearly increases and then decreases

with time, for its good auto correlation property. We adopt the

method introduced in BeepBeep [4] to detect signals at each

microphone. To detect the signal, the recorded audio signal at

each microphone is correlated with a reference chirp signal.

The maximum peak of correlation is concluded as the location

of a signal if the value is significantly larger than that with

background noise. A TDoA of the ith signal is measured as

tiMic1−tiMic2, where tiMic1 and tiMic2 represent the timestamps

of the ith signal detected at Mic1 and at Mic2, respectively.

B. In-direction Position Tracking

As depicted in Figure 6, when the phone is rolled along

its z-axis, the measured TDoA varies in the range of

[−D/S,D/S]. Let α ∈ [0◦, 360◦) denote the angle between

the direction of the speaker and the positive direction of y-

axis of the phone. The speaker is considered on the right-side

of the phone when α ∈ [0◦, 180◦) and on the left-side when

α ∈ [180◦, 360◦). When tiMic1 − tiMic2 = 0, the direction

of the speaker is found, i.e., α = 90◦ means that the speaker

locates in the positive direction of x-axis and α = 270◦ means

that the speaker locates in the negative direction of x-axis. In

this case, the phone is at a so-called in-direction position and
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Fig. 6. Illustration of phone rotation and an in-direction position
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we stop rolling the phone. Figure 7 depicts the relationship

between measured TDoAs and α obtained with a Galaxy S4.

V. PHONE DISPLACEMENT ESTIMATION

In HyperEar, the TDoA measurement range is expanded by

incorporating phone movements. Therefore, accurate motion

information of the phone is key to both TDoA measurement

and the final triangulation calculation. The PDE can obtain

accurate motion estimation through comprehensive signal pro-

cessing on raw inertial sensor readings.

A. Motion Signal Preprocessing

1) Noise Removal: We first use gravimeter to cancel the

gravity to get linear acceleration data. With low-end inertial

sensors, the acceleration and angular speed signals along each

axis of the phone contain high-frequency noise. We remove

such high frequency noise by passing each signal through a

low pass filter. In this work, we use a moving average (SMA)

filter, which is the unweighted mean of the previous n samples.

We empirically choose the value of n to be 4 to achieve -

3dB cut-off frequency at 15Hz with the sampling rate of the

accelerometer and gyroscope being 100Hz.

2) Movement Segmentation: In HyperEar, phone move-

ments only consist of simple sliding operations along a given

direction. In order to determine the starting and ending points

of each slide, we first examine the power levels of the acceler-

ation signals. Particularly, we calculate the power levels of the

acceleration signal along y-axis by averaging the accumulative
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Fig. 8. Segmenting movements based on power of acceleration

square of the signal amplitude in a sliding time window as

shown below

P (t) =
1

W

t+W∑
n=t

a(n), (3)

where W is the length of the time window and a(·) is the

amplitude of the acceleration signal. We empirically take the

length of the sliding window as 4 samples (i.e., 40ms with the

sampling rate of 100Hz). Figure 8 illustrates the power levels

of y-axis acceleration signal when the phone is slid back and

forth along its y-axis. We consider that a slide starts when the

power levels exceeds a threshold and stops when the power

levels goes below the threshold for m samples. An empirical

threshold of 0.2 and m = 8 are used in this work.

B. Sliding Velocity and Displacement Estimation

An intuitive way to estimate the moving speed of the phone

along one axis is to calculate the integral of linear acceleration

along that axis over time. For example, Figure 9(a) illustrates

the y-axis linear acceleration of one slide as a function of

time. The integral speed is depicted as the dashed curve in

Figure 9(b). It can be seen that at the end of the slide, the

integral speed drifts apart from the ground truth (i.e., zero at

the ending point of a slide).

As studied in our prior work [16], the above accumulative

error of integral is approximately a linear function of time.

Given the fact that the true velocity at both ends of a slide is
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Fig. 10. Augmented TDoA Measurements Fig. 11. Projected location on map

zero, the linear model of errors can be derived and utilized

to infer accurate moving speed. In specific, let t1 and t2
respectively denote the starting and ending points of a slide,

and v(t1) and v(t2) respectively denote the integral velocity

values at t1 and t2, as illustrated in Figure 9. For linear

accumulative errors, the slope of the linear model can be

estimated as

erra =
v(t2)

t2 − t1
. (4)

The instant velocity between t1 and t2, therefore, can be

corrected as v∗ (t) = v(t) − erra × (t − t1), where v(t) is

the integral velocity at time t. For example, the solid curve as

shown in Figure 9(b) illustrates the corrected speed.

Given the corrected sliding velocity v∗ (t), the displacement

between any two time instants during a slide can be derived

by taking the integral of v∗ (t) over time.

VI. LOCALIZATION THROUGH TRIANGULATION

A. 2D Localization based on Augmented TDoAs

Assume that the speaker and the phone co-locate in the same

horizontal plane. Without losing generality, we take the case

as depicted in Figure 10, where the speaker locates on the

right side of the phone. Suppose that the phone hears a signal

at position p1 with the corresponding timestamps at Mic1 and

Mic2 being t1 and t3, respectively, and hears the next nth

signal at position p2 with the corresponding timestamps at

Mic1 and Mic2 being t2 and t4, respectively. The TDoA of

Mic1 at p1 and p2 can be measured as Δt′1 = t2 − t1 − n×
T , where T is the period of signals and n is the number of

detected chirp signals according to the algorithm described in

Subsection IV-A. Similarly, the TDoA of Mic2 at p1 and p2
can be measured as Δt′2 = t4 − t3 − n× T .

If Cartesian coordinates are introduced such that the origin

is the center of the two positions of Mic1 and the x-axis is the

inverse y-axis of the phone, then the half hyperbola h′
1 can be

represented as√
(x− D′

2
)2 + y2 −

√
(x+

D′

2
)2 + y2 = Δt′1 × S, (5)

where D′ is the estimated sliding distance between p1 and p2,

and (x, y) is the coordinates of the speaker. Accordingly, the

half hyperbola h′
2 can be represented as√

(x−D − D′

2
)2 + y2−

√
(x−D +

D′

2
)2 + y2 = Δt′2×S,

(6)

where D is the distance between Mic1 and Mic2 on the phone.

The intersection of h′
1 and h′

2, i.e., the solution of (5) and

(6), is the relative location of the speaker in this coordinate

system. In particular, we are interested in the distance L as

illustrated in Figure 10, which is the y coordinate of the

solution.

B. Projected Location Estimation in 3D

In practice, it is hard to know the stature relationship

between a target speaker and the phone. Fortunately, for

indoor localization applications, the location of the smartphone

on a floor map is concerned. With this condition, the 2D

localization based on augmented TDoAs can be extended to

more general cases where the speaker and the phone have

different statures and do not share a common horizontal plane.

In specific, the phone is required to slide on two horizontal

planes with different statures as illustrated in Figure 11. The

scheme for phone displacement estimation can also be used to

estimate the stature change between the two horizontal planes

(e.g., the H as depicted in Figure 11) by conducting the same

signal processing procedure on z-axis acceleration readings.

Given the estimation of L1, L2, and H , the angle β can be

calculated as

β = arccos
H2 + L2

1 − L2
2

2 ·H · L1
. (7)

Therefore, the projected distance L∗ can be calculated as L1×
sin(β).

VII. PERFORMANCE EVALUATION

A. Methodology

We have implemented HyperEar as an application on two

models of smartphones, i.e., Samsung Galaxy S4 and Sam-

sung Galaxy Note3. Both phones run Android 5.0 with two
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Fig. 12. The meeting room and selected speaker locations for localization
experiments

Slide

Smartphone

Speaker

Fig. 13. One of the volunteers sliding an experimental phone in the meeting
room

separated microphones that support 16-bit 44.1kHz sampling

rate and stereo recording. The distance between the two

microphones is 13.66cm and 15.12cm for Samsung Galaxy

S4 and Samsung Galaxy Note3, respectively. A cheap desktop

speaker with 2W root-mean-square (RMS) power and 150Hz-

20kHz frequency response is used. The speaker is mounted on

a tripod for both 2D and 3D localization, and connected to a

laptop which keeps playing chirp signals on every 200ms.

We evaluate HyperEar in two indoor environments:

• A meeting room. The room is approximately 17m×13m

with a front stage and ten raws of seats arranged in

theatre fashion, as shown in Figure 12. We randomly

select five positions in the room to set the speaker. For

each position, we let 10 volunteers, four females and

six males with stature ranging from 160cm to 187cm,

to operate the experimental smartphones according to the

specific requirements of each experiment. An example

operation of HyperEar is illustrated in Figure 13. We also

control the noise level of the room by asking volunteers

to keep quite or to chat.

• A shopping mall. To set the speaker, we randomly select

five positions in the corridor of a shopping mall, which

is 95m×16.5m with shops open on both sides. We

conduct experiments during off-peak hours when there

is background soft music and busy hours when the place

is crowded and with advertisement broadcasting.

We evaluate the HyperEar system using the metric of

accuracy defined as the projected Euclidean distance from the

estimated location and the ground truth location of the speaker

on the floor map.

B. Effectiveness of Sliding

In this experiment, we first examine the effectiveness of

sliding the phone in improving the accuracy of TDoA mea-

surements and 2D localization. For each speaker position in the

meeting room, we randomly select five testing positions that

are at a distance of 5m away from the speaker. To eliminate

the impact of unstable hand operations, in this experiment,

we mount each phone on a level slide ruler when sliding. In

particular, for each selected position, the ruler is set so that

it has the same stature as the speaker and the phone is in-

direction when it moves to the center of the ruler. We then slide

the phone on the ruler for 50 times with different distances,

ranging from 10cm to 60cm with an interval of about 10cm.

For each slide, the sliding distance is estimated with PDE (see

Section V) and the distance from the speaker to the ruler is

estimated with 2D Localization (see Subsection VI-A).

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

Error (m)

C
D

F

 

 

Sliding 10−20cm
Sliding 30−40cm
Sliding 40−50cm
Sliding 50−60cm

Fig. 14. CDF of 2D localization errors under different sliding distances, Note3
on slide ruler

Figure 14 depicts the cumulative distribution function

(CDF) of 2D localization errors over all slides on the Note3.

The results on the S4 are similar. It is obvious to see that

increasing the sliding range will greatly reduce the 2D local-

ization errors. For example, the average localization error is

18cm when sliding range is 50-60cm comparing to the value

of 142cm when the range is 10-20cm. In practice, while it

is ideal to slide the phone for longer distances, it is hard for

a user to stably control the operation as the sliding distance

increases. In HyperEar, slides with an estimated distance over

50cm and z-axis rotation angle less than 20◦ are automatically

selected for use.

C. Impact of Speaker Distance

We then study the effective operation distance of HyperEar.

We take a similar setting as in the above experiment except
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Fig. 15. CDF of 2D localization errors under different operational
ranges, S4 on slide ruler
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Fig. 16. CDF of 2D localization errors under different operational
ranges, Note3 on slide ruler
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Fig. 17. CDF of 3D localization errors with 5-slide aggregation, S4 in
hand
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Fig. 18. CDF of 3D localization errors with 5-slide aggregation, Note3
in hand

that each time we slide the phone in a range of 50-60cm on

the slide ruler and change the distance between the speaker

and the slide ruler from 1m to 7m at an interval of 1m.

Figure 15 and Figure 16 plot the CDFs of 2D localization

errors for each distance with the S4 and the Note3, respec-

tively. It can be seen from both figures that: 1) as the speaker

distance increases, the 2D localization accuracy gradually

decreases; 2) HyperEar achieves better performance on the S4

than on the Note3. For example, the mean and 90%-precision

accuracy for 1m distance are 2.0cm and 3.5cm, respectively,

and the corresponding values are 14.4cm and 22.3cm when

the distance is 7m.

D. 3D Localization

We then examine the performance of the full-version Hy-

perEar smartphone localization system in 3D scenarios. We

change the stature of the speaker to 0.5m and randomly select

5 speaker positions in the meeting room. For each speaker

position, we change the distance of randomly-selected testing

positions from 1m to 7m. For each position of the speaker

and each testing position, we ask each volunteer to use each

experimental phone to first find the direction of the speaker,

slide the phone at one customized stature for five times, change

to another customized stature, and slide the phone for five

times again.

Figure 17 and Figure 18 plot the CDFs of 3D localization

errors for different speaker distances on the S4 and the Note3,

respectively. It can be seen that HyperEar can achieve accurate

localization in 3D scenario. For example, over a distance of

7m, the mean and 90%-precision localization accuracy on the

S4 is 15.8cm and 25.2cm, respectively, and the corresponding

values on the Note3 are 19.4cm and 37.5cm, respectively.

E. Different Indoor Environments

We consider the impact of different indoor environments to

the performance of HyperEar. In this experiment, we mount

the speaker on the tripod for the ease of deployment at five

randomly selected positions in both environments as described

in the methodology. For each speaker position, five testing

positions that are 7m away from the speaker are selected. For

each speaker position and each testing position, we ask each

volunteer to perform 3D localization using HyperEar with

both experimental phones. We conduct the experiment with
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Fig. 19. CDFs of 3D localization errors in two indoor environments with
different noise types and levels

different types of noise and control the volume of the speaker

so that different signal-to-noise ratio (SNR) values are studied.

Figure 19 plots the CDFs of 3D localization errors on the

S4. It can be seen that HyperEar performs stably in the meeting

room where the background noise is mainly voice. Recall

that we choose a 2-6.4kHz linear chirp signal while human

voice is normally lower than 2kHz, which will be filtered

out and has little effect to the localization performance. We

observe similar results for the shopping mall environment in

off-peak hours when there is background music. Though the

frequency band of the background noise in the shopping mall

overlaps with that of our chirp signal, HyperEar can achieve

good performance when SNR is higher than 6dB. When in

busy hours, the background noise level dramatically changes

over time, making the average SNR low and affecting the

localization performance. In the worst case, the mean accuracy

is 37.2cm at a distance of 7m.

VIII. RELATED WORK

We classify existing sound source ranging and localization

systems into two categories based on system complexity.

We further divide each category into two subcategories, i.e.,

communication-based and communication-free.

A. Dedicated Hardware based

1) Communication-based: In Cricket [1], a listener uses

ultrasound to measure the ToF of a beacon with the help

of RF signals and calculates its location with three ToF

measurements. The system has been reported to perform 100%

accurately on 1.2m×1.2m regions. Wang et al [8] implemented

a robot navigation system with a distributed array of 24

microphones. As the robot speaks, TDoA of each pair of

microphones is measured and used to calculate the robot’s

localization. The accuracy can reach about 7cm within about

3m range. Diva et al [6] realize a 2D localization system with

multiple microphones. The system combines GPS information

and wireless sensor network and can achieve an localization

accuracy of 10cm within a 11m×11m area.

2) Communication-free: Valin et al [7] use an array of

no less than four microphones to find the direction of an

acoustic source. The system can reach about 1.7◦ error when

the source is 3-5m away to the array of 8 microphone. Zhang

et al [9] present a unified maximum likelihood framework

of sound source localization and beamforming. The system

uses a microphone array and can achieve AoA accuracy of

6◦ on a 7m×6m×2.5m region. Stefanakis et al [12] use a

4-microphone-array to estimate the AoA of multiple sound

sources. The system uses perpendicular cross-spectra algo-

rithm to derive AoA of signal and count the number of sources.

The AoA accuracy is 2◦ within 1.3m range and the counting

accuracy is 94.3% for 3 sources.

B. COTS Mobile Device based

1) Communication-based: BeepBeep [4] is a high accuracy

ranging system between two COTS devices. The basic idea

of BeepBeep is for each phone to emit a chirp signal, capture

two signals (i.e., one from itself and one from another phone),

and calculate the relative distance with information exchanged

through wireless communication. This method can achieve an

accuracy of 5cm within 10m. Qiu et al [5] propose a method

based on BeepBeep to realize 3D localization between two

smartphones. It can reach an accuracy of tens of centimeters

within 5m.

2) Communication-free: Liu et al [13] use a smartphone

to snoop keystrokes, reaching mm-level audio ranging. Key

strokes are grouped based on TDoA. Acoustic features of

key strokes are further used to differentiate keys. vTrack [14]

uses two or three microphones of a smartphone and combines

TDoA, AoA and power level information to localize and track

a speaker near the phone. After that, it uses doppler-effect to

track the movement of the speaker. vTrack can achieve an

accuracy of 2.3mm on a 0.26m×0.2m region. Although these

approaches can achieve extremely high accuracy with single

device, they can only work in a very short range. Shake and

Walk [20] uses one single microphone to find the direction of

a speaker. The basic idea is to detect the frequency change

caused by the doppler effect when user moves the phone. It

can achieve less than 3◦ error in 32m distance. Walkielokie

[15] is the most related work with HyperEar. It also uses one

single smart device to localize a remote sound source. The

system requires a user to walk and uses the doppler effect

to calculate relative distances of the speaker. Walkielokie can

achieve sub-meter accuracy within a range of tens of meters.

However, this approach needs the user to continuously walk.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed HyperEar, an indoor object

finding system based on a single smartphoen. HyperEar over-

comes hardware limitations posed by a phone and can achieve

15cm accuracy on average for a desktop speaker of 7m away in

normal indoor environments. HyperEar minimizes the system

deployment cost by relying on cheap or existing devices,

which paves the way for wide application of HyperEar.

686

Authorized licensed use limited to: Rutgers University. Downloaded on September 13,2020 at 17:06:53 UTC from IEEE Xplore.  Restrictions apply. 



The current implementation of Hyper has three main lim-

itations, which direct the way of our future work. First, the

system adopts a linear chirp sound signal that is audible to

the human ear. While this may be helpful in the application of

object finding, constantly broadcasting such sounds in public

places will be annoying. In the future, we will examine to

use inaudible sound signals and investigate the impact of

signal distortion due to frequency selectivity of smartphone

microphones. Second, the system assumes a speaker and the

phone to be in LoS condition. In the future, we will utilize

the mobility of the user (e.g., moving to a nearby position

by walk). Last, HyperEar needs a user to perform sliding

operations as stable as possible. We will study more reliable

schemes, such as stereo vision techniques, to tracking the

motion of the phone.
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